255 research outputs found

    Randomized Tensor Ring Decomposition and Its Application to Large-scale Data Reconstruction

    Full text link
    Dimensionality reduction is an essential technique for multi-way large-scale data, i.e., tensor. Tensor ring (TR) decomposition has become popular due to its high representation ability and flexibility. However, the traditional TR decomposition algorithms suffer from high computational cost when facing large-scale data. In this paper, taking advantages of the recently proposed tensor random projection method, we propose two TR decomposition algorithms. By employing random projection on every mode of the large-scale tensor, the TR decomposition can be processed at a much smaller scale. The simulation experiment shows that the proposed algorithms are 4254-25 times faster than traditional algorithms without loss of accuracy, and our algorithms show superior performance in deep learning dataset compression and hyperspectral image reconstruction experiments compared to other randomized algorithms.Comment: ICASSP submissio

    Generative Adversarial Positive-Unlabelled Learning

    Full text link
    In this work, we consider the task of classifying binary positive-unlabeled (PU) data. The existing discriminative learning based PU models attempt to seek an optimal reweighting strategy for U data, so that a decent decision boundary can be found. However, given limited P data, the conventional PU models tend to suffer from overfitting when adapted to very flexible deep neural networks. In contrast, we are the first to innovate a totally new paradigm to attack the binary PU task, from perspective of generative learning by leveraging the powerful generative adversarial networks (GAN). Our generative positive-unlabeled (GenPU) framework incorporates an array of discriminators and generators that are endowed with different roles in simultaneously producing positive and negative realistic samples. We provide theoretical analysis to justify that, at equilibrium, GenPU is capable of recovering both positive and negative data distributions. Moreover, we show GenPU is generalizable and closely related to the semi-supervised classification. Given rather limited P data, experiments on both synthetic and real-world dataset demonstrate the effectiveness of our proposed framework. With infinite realistic and diverse sample streams generated from GenPU, a very flexible classifier can then be trained using deep neural networks.Comment: 8 page

    Temporal and Spatial Features of Single-Trial EEG for Brain-Computer Interface

    Get PDF
    Brain-computer interface (BCI) systems create a novel communication channel from the brain to an output device bypassing conventional motor output pathways of nerves and muscles. Modern BCI technology is essentially based on techniques for the classification of single-trial brain signals. With respect to the topographic patterns of brain rhythm modulations, the common spatial patterns (CSPs) algorithm has been proven to be very useful to produce subject-specific and discriminative spatial filters; but it didn't consider temporal structures of event-related potentials which may be very important for single-trial EEG classification. In this paper, we propose a new framework of feature extraction for classification of hand movement imagery EEG. Computer simulations on real experimental data indicate that independent residual analysis (IRA) method can provide efficient temporal features. Combining IRA features with the CSP method, we obtain the optimal spatial and temporal features with which we achieve the best classification rate. The high classification rate indicates that the proposed method is promising for an EEG-based brain-computer interface
    corecore